
 

 



 

AWS Solutions Architect Associate - Day 
1 Notes 

Topic: AWS Well-Architected Framework 

The AWS Well-Architected Framework solves common problems faced in cloud 

computing. It is a set of guidelines or a blueprint that helps to build the best 

architectures, which are secure, durable, resilient, scalable, etc. This helps to build trust. 

Its six main pillars are: 

1. Security 

Goal: Protect data and assets. 

Key Considerations: 

●​ Confidentiality of data. 

●​ Identity and Access Management (IAM). 

●​ Detecting and mitigating threats and risks. 

2. Cost Optimization 

Goal: Use only necessary resources and avoid unnecessary costs/resources. 

Key Considerations: 

●​ Eliminating unneeded resources. 

●​ Choosing the right resource types and sizes. 

●​ Taking advantage of pricing models (e.g., Reserved Instances, Spot Instances). 

●​ Optimizing for consumption. 



 

3. Performance Efficiency 

Goal: Use resources efficiently and maintain efficiency as changes occur. 

Key Considerations: 

●​ Selecting appropriate resource types. 

●​ Monitoring performance. 

●​ Adapting to demand (e.g., auto-scaling). 

●​ Using serverless architectures where appropriate. 

4. Sustainability 

Goal: Reduce carbon footprint and minimize environmental impact. 

Key Considerations: 

●​ Optimizing resource utilization. 

●​ Adopting managed services. 

●​ Reducing data transfer. 

●​ Choosing energy-efficient regions. 

5. Operational Excellence 

Goal: Ensure smooth work is done and improve operations over time. 

Key Considerations: 

●​ Business Continuity: Running and monitoring the system. 

●​ The system should be efficient, reliable, and improve over time. 

●​ Practices for Operational Excellence: 
○​ Use operations as code: This automates work, reduces human error, 

and speeds up processes (e.g., using Terraform). 

○​ Make frequent, small, and reversible changes: This minimizes risk and 

allows for quick rollbacks. 



 

○​ Anticipate failures: Design systems to be resilient to expected issues. 

○​ Continuously improve: Regularly review and refine operational 

procedures and architectures. 

6. Reliability 

Goal: Ensure the system performs its intended function correctly and consistently. 

Key Considerations: 

●​ Backup and System Recovery: Implementing robust backup strategies and 

disaster recovery plans. 

●​ Dynamically Meeting Demand: Designing systems to scale up or down based 

on fluctuating demand. 

●​ Mitigate Risk: Identifying and addressing potential failure points. 

●​ Practices for Reliability: 
○​ Automatically recover from failure: Implement mechanisms like 

auto-healing and self-correction. 

○​ Test recovery policies: Regularly validate that disaster recovery plans 

work as expected. 

○​ Scale horizontally: Distribute load across multiple resources so that if 

one fails, others will continue to work, ensuring high availability. 

 

 

 

 

 

 

 

 



 

AWS Solutions Architect Associate - Day 
2 Notes 

Topic: AWS Global Infrastructure 

The AWS Global Infrastructure forms the backbone of AWS, designed to provide robust, 

highly available, and scalable services worldwide. 

Key Components: 

●​ Regions: 

○​ Large, geographically distinct areas (e.g., us-east-1). 

○​ Each region consists of multiple isolated Availability Zones and data 

centers. 

○​ Designed for high availability and fault tolerance. 

●​ Availability Zones (AZs): 
○​ Located within a Region. 

○​ Each AZ comprises one or more discrete data centers with redundant 

power, networking, and connectivity. 

○​ They are physically separated by a meaningful distance (typically 10s to 

100s of kilometers) to minimize the risk of a single event impacting 

multiple AZs, but close enough to enable ultra-low latency connections 

between them. 

●​ Edge Locations (Points of Presence - PoPs): 
○​ Globally distributed data centers designed for low-latency content delivery. 

○​ They cache frequently used data closer to end-users. 

○​ Primarily used by Amazon CloudFront (Content Delivery Network - CDN) 

and AWS WAF (Web Application Firewall) to protect against DDoS 

attacks. 

○​ There are currently over 400+ edge locations worldwide. 



 

AWS Service Types by Scope: 

●​ AWS Global Services: Services that are not tied to a specific region and are 

accessible globally. 

○​ Examples: IAM (Identity and Access Management), Route 53 (DNS), 

CloudFront (CDN), AWS WAF (Web Application Firewall). 

●​ AWS Region-Specific Services: Services that are deployed within specific AWS 

Regions. 

○​ Examples: EC2 (Elastic Compute Cloud - IaaS), Elastic Beanstalk (PaaS), 

Lambda (Function as a Service - FaaS). 

Topic: AWS Identity and Access Management (IAM) 

AWS IAM is a service that helps you securely manage identities and access to AWS 

resources. It focuses on authentication (verifying who you are) and authorization 

(determining what you can do). The core principle of IAM is least privilege, meaning 

users and resources should only have the minimum permissions required to perform 

their tasks. 

Key IAM Components: 

●​ Root User: 
○​ The main account created when you first set up your AWS account. 

○​ Possesses all permissions and cannot be restricted. 

○​ Best Practice: Never use the root user for daily tasks. Use it only for 

initial setup and highly sensitive account management. 

●​ Users: 
○​ Represents a person, individual application, or service within your AWS 

account. 

○​ Can be granted programmatic access via an Access Key ID (public key) 

and a Secret Access Key (private key) for interacting with AWS CLI, 

SDKs, and APIs. 



 

●​ Groups: 
○​ A collection of IAM users. 

○​ Permissions are attached to the group, and all users within that group 

inherit those permissions. 

○​ Important: There is no nesting of groups (a group cannot contain another 

group). 

○​ One user can belong to multiple groups. 

●​ Roles: 
○​ IAM entities that define a set of permissions for making AWS service 

requests. 

○​ They are designed to grant temporary access to users or AWS services. 

○​ Main Use Case: Allowing an AWS resource (e.g., an EC2 instance) to 

securely access another AWS service (e.g., S3). 

○​ Example: An auditor might assume a specific role that only grants 

read-only access to certain resources. 

●​ IAM Policies: 
○​ JSON documents that define permissions. 

○​ They specify what actions are allowed or denied on which resources. 

○​ Policies can be attached to users, groups, roles, or directly to resources. 

○​ Key Elements of a Policy: 

■​ Effect: Specifies whether the policy Allows or Denys access. 

■​ Principal: The entity (user, role, or AWS service) that is allowed 

or denied access. 

■​ Action: The specific API operations that are allowed or denied 

(e.g., s3:GetObject, ec2:RunInstances). 

■​ Resource: The AWS resource(s) on which the action can be 

performed (e.g., a specific S3 bucket, an EC2 instance). 

■​ Sid (Statement ID): An optional identifier for the policy statement. 

○​ Types of Policies: 



 

■​ AWS Managed Policies: Predefined policies created and 

managed by AWS (e.g., AmazonS3ReadOnlyAccess). 

■​ Customer Managed Policies: Custom policies created and 

managed by you. These can be reused and attached to multiple 

users, groups, or roles. 

■​ Inline Policies: Policies embedded directly within a single user, 

group, or role. They cannot be reused and are deleted if the 

associated entity is deleted. 

IAM Key Features: 

●​ MFA (Multi-Factor Authentication): Adds an extra layer of security by requiring 

more than one method of verification. 

●​ Access Analyzer: Helps you identify unintended access to your external 

resources (e.g., S3 buckets, SQS queues) by external entities at the account 

level. 

●​ Credential Report: A report that lists all your account's users and the status of 

their various credentials (passwords, access keys, MFA devices). Useful for 

security audits. 

●​ Access Advisor: Shows the services that a user has accessed and the last time 

they accessed them. This helps in refining permissions to the principle of least 

privilege at the user level. 

AWS Command Line Interface (CLI): 

●​ An open-source tool that allows you to interact with AWS services from your 

command line. 

●​ Enables automation, scripting, and managing AWS resources programmatically. 

●​ Requires an Access Key ID (public key) and a Secret Access Key (private key) 

for authentication. 

 



 

AWS Software Development Kit (AWS SDK): 

●​ A set of libraries that enables you to access and manage AWS services 

programmatically using various programming languages (e.g., Python, Java, 

Node.js, .NET). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

AWS Solutions Architect Associate - Day 
3 Notes 

Topic: Guided Lab: Exploring AWS Identity and 
Access Management (IAM) 

Lab Summary 

This lab was a hands-on practice session for AWS IAM. We learned how users get 

permissions from groups and tested these permissions in a real scenario. 

Main Goals: 

●​ See pre-made IAM users and groups. 

●​ Check IAM policies attached to groups. 

●​ Add users to groups based on their job roles. 

●​ Find and use the IAM login page. 

●​ Test if users could access services as expected. 

Time: About 40 minutes. 

Task 1: Understanding Users, Groups, and Policies 

We looked at existing IAM users (user-1, user-2, user-3) and groups (EC2-Admin, 

EC2-Support, S3-Support). 

●​ Policy Types: 
○​ Managed Policies: These are AWS-made policies, like 

AmazonEC2ReadOnlyAccess for EC2-Support and 

AmazonS3ReadOnlyAccess for S3-Support. They update 

automatically and are reusable. 



 

■​ For example, AmazonEC2ReadOnlyAccess lets you view EC2, 

Load Balancers, CloudWatch, and Auto Scaling info. 

■​ Another example, AmazonS3ReadOnlyAccess lets you view S3 

buckets and their contents. 

○​ Inline Policies: These policies are attached directly to one user or group, 

like EC2-Admin-Policy for EC2-Admin. They are for specific situations 

and aren't reusable. 

■​ For example, EC2-Admin-Policy lets you view, start, and stop 

EC2 instances. 

Business Scenario 

We set up access for new staff based on their job functions: 

●​ user-1 was assigned to the S3-Support group for read-only access to 

Amazon S3. 

●​ user-2 was assigned to the EC2-Support group for read-only access to 

Amazon EC2. 

●​ user-3 was assigned to the EC2-Admin group for viewing, starting, and 

stopping Amazon EC2 instances. 

 

 



 

Task 2: Adding Users to Groups 

We added each user to their assigned group: 

●​ user-1 joined S3-Support. 

●​ user-2 joined EC2-Support. 

●​ user-3 joined EC2-Admin. Each group then correctly showed 1 user. 

 

Task 3: Testing User Permissions 

We logged in as each user in a private browser to check their access. 

●​ user-1 (S3 Support): 

○​ S3: Could view S3 buckets and contents (Success). 

○​ EC2: Got "not authorized" error when trying to access EC2 (Correct). 



 

 

●​ user-2 (EC2 Support): 

○​ EC2: Could view EC2 instances (Success). 

○​ EC2 Action: Got "not authorized" error when trying to stop an EC2 

instance (Correct, as it's read-only). 

○​ S3: Got "don't have permissions" error when trying to access S3 (Correct). 

 

●​ user-3 (EC2 Administrator): 

○​ EC2: Could view EC2 instances (Success). 

○​ EC2 Action: Successfully stopped an EC2 instance (Success, confirming 

admin rights). 



 

 

Conclusion 

This lab helped us understand how AWS IAM works in practice. We saw how users get 

permissions from groups, how different policy types work, and how the "least privilege" 

rule keeps things secure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

AWS Solutions Architect Associate - Day 
4 Notes 

Topic: How Networking Works in AWS 

Today, we learned about the basic parts of networking that help us build things in AWS. 

1. CIDR (Classless Inter-Domain Routing) 

●​ What it is: A way to set a range of IP addresses. 

●​ How it looks: An IP address plus a number like /24 (e.g., 10.0.0.0/24). 

●​ The /XX number: This number tells us how many IPs are in the range. 

○​ /0 means a very big range (almost all IPs). 

○​ /32 means just one single IP address. 

○​ AWS Special IPs: AWS always keeps the first five IP addresses in any 

network you make for its own use. So, plan your IPs knowing these will be 

taken. 

2. Public vs. Private IP Addresses 

●​ Public IPs: 
○​ Unique around the world on the internet. 

○​ Let your AWS resources be seen and reached from anywhere on the 

internet. 

●​ Private IPs: 
○​ Used only inside your own private network (like your VPC). 

○​ Can be used again in different, separate private networks without causing 

problems. 

○​ Cannot be reached directly from the internet. 



 

3. VPC (Virtual Private Cloud) 

●​ What it is: Your own private, isolated section of the AWS Cloud. It's like having 

your own data center inside AWS. 

●​ Purpose: Keeps your resources separate from others. 

●​ Limits: You can have up to 5 VPCs in each AWS Region. 

●​ IP Range for VPCs: 

○​ Smallest size: /28 (e.g., 10.0.0.0/28). 

○​ Biggest size: /16 (e.g., 10.0.0.0/16). 

●​ Default VPC: AWS gives you one VPC automatically when you start. It usually 

has an IP range like /16 (e.g., 172.31.0.0/16). 

4. Internet Gateway (IGW) 

●​ What it does: Lets your VPC talk to the internet. 

●​ How many: You can only have one Internet Gateway per VPC. 

●​ Strength: It's built to handle lots of traffic and is very reliable, so it won't break 

easily. 

5. Bastion Host 

●​ What it is: A special EC2 server placed in a public part of your network. It's like a 

secure jump point. 

●​ How it helps: You connect to this server first, and then from there, you can 

securely connect to your private servers that are not directly on the internet. 

●​ Security: Needs specific rules to allow only certain connections to it. 

6. NAT (Network Address Translation) 

●​ What it does: Allows your private servers to connect to the internet (or other 

AWS services) without being directly exposed to the internet. It changes their 

private IP to a public one when they go out. 

●​ Two Types: 



 

○​ NAT Instance (Old Way): 
■​ An EC2 server that does the NAT job. 

■​ Speed: Depends on how powerful the EC2 server is (a small one 

like t2.micro will be slow). 

■​ Management: You have to set it up and manage it yourself. 

■​ Security: You can put security rules on it. 

■​ Cost: Cheaper for very little traffic. 

○​ NAT Gateway (Newer, Recommended Way): 
■​ An AWS service that handles NAT for you. 

■​ Speed: Very fast, up to 100 Gbps, and its speed doesn't depend on 

an EC2 server type. 

■​ Management: AWS manages it completely, so you don't have to do 

anything. 

■​ Security: AWS handles its security. 

■​ Cost: Costs more than a NAT instance, but it's more reliable and 

performs better. 

■​ Setup: Very easy to set up. 

7. Security Groups and Network Access Control Lists (NACLs) 

These are two different ways to add security to your network. 

●​ Security Group: 
○​ Acts like a firewall for individual servers (like your EC2 instances). 

○​ Smart (Stateful): If you allow traffic in, it automatically allows the reply 

traffic out for that connection. You only need to set rules for one direction. 

○​ By default, it blocks all incoming traffic but allows all outgoing traffic. 

○​ Attached directly to your servers. 

●​ Network Access Control List (NACL): 
○​ Acts like a firewall for an entire network section (a subnet). 

○​ Not Smart (Stateless): If you allow traffic in, you must also set a rule to 

allow the reply traffic out. You need to set rules for both directions. 



 

○​ The default NACL allows all traffic in and out. If you make your own, it 

blocks all traffic by default. 

○​ Rules are followed in order, starting with the lowest rule number. 

○​ Works with ephemeral ports. 

■​ Ephemeral Ports: These are temporary, random port numbers 

(usually high numbers like 1024-65535) that your computer uses 

when it starts a connection to a server. For example, when your 

computer connects to a website, it uses one of these random ports. 

NACLs need rules for these port ranges in both directions for 

connections to work. 

 

 

 

 
 

 

 

 

 

 

 

 



 

AWS Solutions Architect Associate - Day 
5 Notes 

Topic: Vpc peering,Transit Gateway, Vpc endpoint, site 
to Site vpn, Direct Connect (DX), vpc flowlog, Vpc 
traffic Mirroring 
 

1. VPC Peering 

●​ Like a direct, private cable connecting two separate networks (VPCs) so they can 

talk to each other. 

●​ Can connect your own networks or networks from different AWS accounts. 

●​ You don't need the internet, a special VPN, or a Direct Connect cable for them to 

chat. 

●​ Keeps your data safe and private when moving between your networks. 

●​ Important Things to Remember: 
○​ No Same IPs: The IP addresses in the two networks must be different. No 

overlap! 

○​ No Jumping Through: If Network A talks to B, and B talks to C, Network 

A cannot talk to C through B. You'd need a direct link from A to C. 

○​ Can Get Messy: If you have too many networks, keeping track of all these 

direct links can get complicated. 

○​ Cost: Cheaper if networks are in the same AWS region. Costs more if 

they are far apart in different regions. 

●​ Better for Big Needs: For very complex setups, there's something called Transit 

Gateway. 



 

2. Transit Gateway 

●​ A central "hub" or "router" in the cloud that connects all your networks (VPCs) 

and even your office networks. 

●​ Helps you manage all your network connections from one spot. 

●​ Unlike VPC peering, this hub does let networks talk through it. So, if Network A 

and Network C both connect to the Transit Gateway, A can talk to C. 

●​ Can connect many networks, making your overall setup simpler and easier to 

grow. 

●​ Cost: Costs more than simple VPC peering, but it's better for big, growing 

networks. 

3. VPC Endpoints 

●​ A special way to connect your network (VPC) to other AWS services (like S3 for 

storage or DynamoDB for databases) without ever touching the public internet. 

●​ Good Stuff: 
○​ Faster and Safer: Your data stays private and moves quickly. 

○​ Saves Money: You don't pay for internet data charges that you would with 

other ways. 

○​ Another Name: Also called "PrivateLink." 

●​ Two Types: 
○​ Interface Endpoint: 

■​ For: Most AWS services (like tools for monitoring or security). 

■​ Cost: You pay a small fee for this. 

■​ How it Works: It creates a virtual network card (ENI) in your 

network. 

■​ What is an ENI? Imagine a virtual plug for your computer in 

the cloud. It gives your server a private address and lets it 

connect to your private network. 

○​ Gateway Endpoint: 



 

■​ For: Only two specific AWS services: Amazon S3 (for storage) and 

Amazon DynamoDB (for databases). 

■​ Cost: This one is free to use! 

■​ How it Works: It adds a special rule to your network's "directions 

map" (route table) that sends traffic for S3 or DynamoDB directly to 

AWS's private network, skipping the internet completely. 

4. Site-to-Site VPN 

●​ A secure, encrypted "tunnel" created over the regular internet. It connects your 

office network (or another cloud) to your AWS network (VPC). 

●​ VPN (Virtual Private Network): A general term for making a safe connection 

over an unsafe network, like hiding your computer's public address. 

●​ Security: Uses strong encryption (IPsec) to keep your data secret as it travels. 

●​ Cost: Usually cheaper than a super-fast, dedicated cable. 

●​ Speed: Can be slower because it uses the internet. 

●​ Security Concern: Not as safe as a direct cable because it still uses the public 

internet. 

●​ Good For: When you need to connect your office to AWS, but don't need the 

fastest speed or highest security. 

5. AWS Direct Connect 

●​ A dedicated, physical cable connection (fiber optic) that goes straight from your 

office or data center to an AWS location. 

●​ Speed: Very, very fast. 

●​ Setup Time: Can take a long time to get installed because it's a physical cable. 

●​ Security: Much safer because it never uses the public internet. 

●​ Latency: Very quick response responses (almost no delay). 

●​ Cost: Expensive to set up, but cheaper if you send a lot of data all the time. 

●​ Requirement: You need to be physically near an AWS Direct Connect location. 

●​ Two Types: 



 

○​ Dedicated Connection: 
■​ Your own private cable straight to AWS. No sharing. 

■​ Cost: More expensive. 

■​ Growth: Not easy to quickly change its speed. 

○​ Hosted Connection: 
■​ You share a part of a connection that an AWS partner provides. 

■​ Permission: You need approval from the partner. 

■​ Cost: Cheaper than your own dedicated cable. 

■​ Growth: Easier to change its speed as needed. 

6. VPC Flow Logs 

●​ Like a security camera for your network traffic. It records details about the IP 

traffic going in and out of your VPC, subnets, or network interfaces. 

●​ Purpose: Mainly used for monitoring and security. 

●​ What it shows: It shows metadata (who, when, how much data), not the actual 

content of the data. For example, "10.0.0.5 sent 500 bytes to 10.0.0.8." 

●​ Where logs go: The logs are stored in Amazon S3 or Amazon CloudWatch 

Logs. 

●​ Bandwidth Impact: Has very little effect on your network speed. 

●​ Use Cases: Good for auditing, general monitoring, and basic troubleshooting. 

●​ Filtering: You can filter logs (e.g., to see only accepted or rejected traffic). 

7. VPC Traffic Mirroring 

●​ A more advanced tool that makes a full copy of your network traffic from an EC2 

instance. 

●​ Purpose: For deep inspection, security checks, and finding problems. 

●​ What it shows: It shows the full packets (the actual data content, including 

headers and payloads). For example, it could show the actual text of an HTTP 

request. 



 

●​ Where it sends data: The copied traffic is sent to another EC2 instance, a 

Network Load Balancer (NLB), or a special tool (like Wireshark) for analysis. 

●​ Can see passwords/files? Yes, if the data was sent without encryption (in clear 

text). 

●​ Bandwidth Impact: Can use a lot of network bandwidth because it copies all 

traffic. 

●​ Use Cases: Great for deep security checks, digital forensics, and using Intrusion 

Detection Systems (IDS). 

●​ Works with: Only works with newer EC2 instances (Nitro-based instances). 

 

IPv4 and IPv6 (Internet Protocol Versions) 

These are the rules that allow devices to talk to each other on a network, like addresses 

for houses. 

●​ IPv4 (Internet Protocol version 4): 

○​ Uses 32-bit addresses (e.g., 192.168.1.1). 

○​ Can create about 4.3 billion unique addresses. 

○​ Why it's still preferred/used: 
■​ Works Everywhere: Most older devices and systems still use IPv4. 

It's widely compatible. 

■​ Simple: The addresses are shorter and easier for humans to 

remember and type. 

■​ Cost: Changing everything to IPv6 costs money for new equipment 

and training. 

■​ NAT Helps: Network Address Translation (NAT) helps IPv4 last 

longer by letting many private devices share one public IP. 

■​ Slow Change: Not everyone has moved to IPv6 yet, so IPv4 is still 

needed. 

●​ IPv6 (Internet Protocol version 6): 



 

○​ Uses 128-bit addresses (e.g., 

2001:0db8:85a3:0000:0000:8a2e:0370:7334). 

○​ Can create a huge number of unique addresses (trillions upon trillions), 

solving the problem of running out of IPs. 

○​ Why it's important (more than just running out of addresses): 
■​ Better Routing: Can send data more efficiently because its 

structure is simpler. 

■​ Built-in Security: Has security features (like IPsec) built right in, 

making connections safer by default. 

■​ Auto-Setup: Devices can often set up their own IP addresses 

automatically, making network management easier. 

■​ Good for Mobile/IoT: Works better with mobile devices and the 

massive number of Internet of Things (IoT) devices. 

■​ Better Quality: Can handle different types of traffic better, which is 

good for things like video calls or online gaming. 

■​ No NAT Needed: Because there are so many addresses, the 

complex NAT system is often not needed, simplifying networks. 

 

 

 

 

 



 

AWS Solutions Architect Associate - Day 
6 Notes 

Topic: Guided Lab: Creating a VPC 

Task 1: Creating a VPC 

We started by making a new VPC. 

●​ VPC Name: Lab VPC 

●​ IP Range (CIDR): 10.0.0.0/16 (This gives us over 65,000 IP addresses). 

●​ We also turned on DNS hostnames so our servers would get easy-to-read 

names. 

 

Task 2: Creating Subnets 

Next, we made two smaller networks (subnets) inside our VPC. 

●​ Public Subnet: 



 

○​ Name: Public Subnet 

○​ IP Range (CIDR): 10.0.0.0/24 

○​ We set it to automatically give public IP addresses to any server launched 

in it. This subnet is for internet-facing resources. 

 

 

Task 3: Creating an Internet Gateway 

We created an Internet Gateway (IGW) to let our VPC talk to the internet. 

●​ Name: Lab IGW 

●​ We then attached this IGW to our Lab VPC. An IGW is very reliable and handles 

lots of traffic. 



 

 

Task 4: Configuring Route Tables 

Route tables tell network traffic where to go. 

●​ We renamed the default route table to Private Route Table. 

●​ We created a new route table called Public Route Table. 

●​ In the Public Route Table, we added a rule to send all internet-bound traffic 

(0.0.0.0/0) to our Lab IGW. 

●​ Finally, we connected our Public Subnet to this Public Route Table. 

This step made the Public Subnet truly public. 



 

 

Task 5: Creating a Security Group 

We made a security group, which acts like a firewall for individual servers. 

●​ Name: App-SG 

●​ Description: Allow HTTP traffic 

●​ We added a rule to allow incoming HTTP (web) traffic on port 80 from 

anywhere on the internet. This group will protect our web server. 

Task 6: Launching an Application Server 

To test our VPC setup, we launched an EC2 instance (a virtual server) into our Public 

Subnet. 

●​ Name: App Server 

●​ We chose a basic Linux image (Amazon Linux 2023 AMI) and a small server 

type (t2.micro). 

●​ We made sure it used our Lab VPC, Public Subnet, and the App-SG security 

group. 

●​ After the server started, we copied its Public IPv4 DNS and pasted it into a web 

browser. 



 

 

Conclusion 

This lab successfully taught us how to: 

●​ Build a VPC from scratch. 

●​ Set up public subnets. 

●​ Connect our VPC to the internet using an Internet Gateway. 

●​ Configure network traffic rules with route tables. 

●​ Secure our servers with security groups. 

●​ Launch and test an application server within our custom VPC. 

 

 

 

 



 

AWS Solutions Architect Associate - Day 
7 Notes 

Topic: Guided Lab: VPC Peering 

Lab Summary 

Today's lab was a hands-on session where we learned how to connect different private 

networks (VPCs) using VPC peering. This allows them to share data directly and 

securely. 

What we built and connected: 

●​ 3 VPCs: Our main private networks. 

 

●​ 3 Public Subnets: One in each VPC, for internet-facing resources. 

 
 
 
 



 

●​ Internet Gateways (IGWs): One for each VPC, to allow internet access. 

 

●​ Route Tables: To tell network traffic where to go. 

 

●​ 3 EC2 Instances: One virtual server in each VPC's public subnet. 

 

Key Steps: VPC Peering Setup 

The main part of the lab was setting up the VPC peering connections: 

1.​ VPC Peering Connection 1: Between VPC 0 and VPC 1. 

2.​ VPC Peering Connection 2: Between VPC 1 and VPC 2. 

3.​ VPC Peering Connection 3: Between VPC 2 and VPC 0. 



 

 
 

Route Table Configuration 

After creating the peering connections, we had to update the route tables for each VPC. 

This step is crucial because it tells each VPC how to send traffic to the other connected 

VPCs through the new peering links. 

 

Testing the Connections 

Finally, we tested if the connections worked as expected: 

●​ We used SSH to log into each EC2 instance. 

●​ From each EC2 instance, we used the curl command to try and connect to the 

private IP addresses of the EC2 instances in the other VPCs. 

●​ Result: The curl commands were successful, showing that the VPC peering 

connections and route table setups allowed private communication between the 

EC2 instances in different VPCs. 

 



 

 

Conclusion 

This lab successfully taught us how to: 

●​ Set up multiple VPCs. 

●​ Create VPC peering connections between them. 

●​ Configure route tables to direct traffic through peering connections. 

●​ Verify private network communication between instances in different peered 

VPCs. 

This hands-on practice clearly showed how VPC peering enables secure and private 

data sharing between isolated networks in AWS. 

 

 

 


	 
	AWS Solutions Architect Associate - Day 1 Notes 
	Topic: AWS Well-Architected Framework 
	1. Security 
	2. Cost Optimization 
	3. Performance Efficiency 
	4. Sustainability 
	5. Operational Excellence 
	6. Reliability 


	AWS Solutions Architect Associate - Day 2 Notes 
	Topic: AWS Global Infrastructure 
	Key Components: 
	AWS Service Types by Scope: 

	Topic: AWS Identity and Access Management (IAM) 
	Key IAM Components: 
	IAM Key Features: 
	AWS Command Line Interface (CLI): 
	 
	AWS Software Development Kit (AWS SDK): 


	 
	 
	AWS Solutions Architect Associate - Day 3 Notes 
	Topic: Guided Lab: Exploring AWS Identity and Access Management (IAM) 
	Lab Summary 
	Task 1: Understanding Users, Groups, and Policies 
	Business Scenario 
	 
	Task 2: Adding Users to Groups 
	Task 3: Testing User Permissions 
	Conclusion 


	AWS Solutions Architect Associate - Day 4 Notes 
	Topic: How Networking Works in AWS 
	1. CIDR (Classless Inter-Domain Routing) 
	2. Public vs. Private IP Addresses 
	3. VPC (Virtual Private Cloud) 
	4. Internet Gateway (IGW) 
	5. Bastion Host 
	6. NAT (Network Address Translation) 
	7. Security Groups and Network Access Control Lists (NACLs) 


	 
	 
	 
	AWS Solutions Architect Associate - Day 5 Notes 
	Topic: Vpc peering,Transit Gateway, Vpc endpoint, site to Site vpn, Direct Connect (DX), vpc flowlog, Vpc traffic Mirroring 
	1. VPC Peering 
	2. Transit Gateway 
	3. VPC Endpoints 
	4. Site-to-Site VPN 
	5. AWS Direct Connect 
	6. VPC Flow Logs 
	7. VPC Traffic Mirroring 
	IPv4 and IPv6 (Internet Protocol Versions) 

	 
	 
	 
	 
	 
	AWS Solutions Architect Associate - Day 6 Notes 
	Topic: Guided Lab: Creating a VPC 
	Task 1: Creating a VPC 
	Task 2: Creating Subnets 
	Task 3: Creating an Internet Gateway 
	Task 4: Configuring Route Tables 
	Task 5: Creating a Security Group 
	Task 6: Launching an Application Server 
	Conclusion 


	 
	AWS Solutions Architect Associate - Day 7 Notes 
	Topic: Guided Lab: VPC Peering 
	Lab Summary 
	Key Steps: VPC Peering Setup 
	Route Table Configuration 
	Testing the Connections 
	Conclusion 



